以下是通过韬略实验室复测后的其中一个实验数据:
从数据可以看出,750MHz这个频点确实比较高,前后离散分布的其他频点的频率差为50MHz,说明产品上存在以50MHz为基频工作的电路模块。
(资料图片)
2.辐射路径判断
除了时钟信号线WL-SDIO-CLK测得到50MHz的时钟倍频,通过探针探测,发现R16到WIFI芯片的数据信号线也能测到这些时钟频点,初步判断噪声源头为R16到WIFI的时钟信号,并耦合到数据通信信号。
3.整改过程
通过RC对时钟线和信号线进行滤波处理,越靠近R16芯片端越好,实际由于PCB布板空间问题,所以一开始只对时钟线做滤波处理,电容用100pF,主要考虑该电容的谐振频率点在1GHz左右,对750MHz频段可以起到较好的效果。
效果如下:
频率向更高的800MHz移动,考虑到拆装机的影响,说明只对时钟信号处理并没有起到很好的效果。后尝试对信号线加56pF电容滤波,数据如下:
可以看到,对800MHz及之前的频点有效果,但对850MHz这个频点并没有很好的改善效果。受空间限值,如果要针对时钟信号和数据信号走线做优化走线和滤波处理,需要配合改板,将滤波电容位置靠近R16芯片端,预留位置做RC滤波。
4.尝试查找是否存在其他辐射路径
利用近场探头再仔细探查,主要针对排线和PCB板之间的信号连线,因为这些都是比较常见的辐射路径。通过排查,发现如图所示信号线有50MHz的倍频点:
通过频谱探针进一步确定,信号引脚UART2_RX作为R16芯片与雷达模块的信号通信接口,耦合到了高频时钟噪声,成为了辐射天线之一,通过将该引脚对地加100pF电容滤波,结果如下:
从数据可以看出,高频段的噪声频点都没有了。
最终的整改措施只在UART_RX引脚处对地加100pF电容,整改用到的设备和器件有:频谱仪,近场探头,探针,电容。
标签: